Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae.
نویسندگان
چکیده
Two cDNA species, aggst1-5 and aggst1-6, comprising the entire coding region of two distinct glutathione S-transferases (GSTs) have been isolated from a 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistant strain (ZANDS) of Anopheles gambiae. The nucleotide sequences of these cDNA species share 80.2% identity and their derived amino acid sequences are 82.3% similar. They have been classified as insect class I GSTs on the basis of their high sequence similarity to class I GSTs from Drosophila melanogaster and Musca domestica and they are localized to a region of an An. gambiae chromosome known to contain further class I GSTs. The genes aggst1-5 and aggst1-6 were expressed at high levels in Escherichia coli and the recombinant GSTs were purified by affinity chromatography and characterized. Both agGST1-5 and agGST1-6 showed high activity with the substrates 1-chloro-2,4-dinitrobenzene and 1, 2-dichloro-4-nitrobenzene but negligible activity with the mammalian theta class substrates, 1,2-epoxy-3-(4-nitrophenoxy)propane and p-nitrophenyl bromide. Despite their high level of sequence identity, agGST1-5 and agGST1-6 displayed different kinetic properties. Both enzymes were able to metabolize DDT and were localized to a subset of GSTs that, from earlier biochemical studies, are known to be involved in insecticide resistance in An. gambiae. This subset of enzymes is one of three in which the DDT metabolism levels are elevated in resistant insects.
منابع مشابه
Determination of Glutathione S-Transferase e2 Region (GSTe2) in DDT Susceptible and Resistant Anopheles stephensi Populations: Significance and Application of Nucleotide and Amino Acid Comparison
Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Interest in insect GSTs has primarily focused on their role in insecticide resistance. In this study, following World Health Organization (WHO) routine susceptibility test, DNA was extracted from specimens of Anopheles stephensi collected from the Kazeroon distri...
متن کاملStructure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae.
Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Most organisms possess many GSTs belonging to multiple classes. Interest in GSTs in insects is focused on their role in insecticide resistance; many resistant insects have elevated levels of GST activity. In the malaria vector Anopheles gambiae, elevated GST leve...
متن کاملCharacterization of the promoters of Epsilon glutathione transferases in the mosquito Anopheles gambiae and their response to oxidative stress.
Epsilon class GSTs (glutathione transferases) are expressed at higher levels in Anopheles gambiae mosquitoes that are resistant to DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] than in insecticide-susceptible individuals. At least one of the eight Epsilon GSTs in this species, GSTe2, efficiently metabolizes DDT to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane]. In the present study, w...
متن کاملHeterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae.
A cluster of eight genes encoding glutathione transferases (GSTs) are located on division 33B of polytene chromosome arm 3R of the African malaria mosquito, Anopheles gambiae. This region of the genome contains a major 1,1,1-trichloro-2,2-bis-( p -chlorophenyl)ethane (DDT)-resistance locus, rtd1. These GSTs belong to the insect-specific Epsilon class and share between 22.6 and 65.2% identity at...
متن کاملIdentification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae.
The sequence and cytological location of five Anopheles gambiae glutathione S-transferase (GST) genes are described. Three of these genes, aggst1-8, aggst1-9 and aggst1-10, belong to the insect class I family and are located on chromosome 2R, in close proximity to previously described members of this gene family. The remaining two genes, aggst3-1 and aggst3-2, have a low sequence similarity to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 324 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1997